Question on: JAMB Physics - 2020

The linear expansivity of brass is 2 x 10\(^{-5}\)  \(^oC^{-1}\). If the volume of piece of brass is 2 x 10cm\(^3\) at 0\(^o\)C. What will be its volume at 100\(^o\)C? 

A

10.06cm\(^3\)

B

10.04 cm\(^3\)

C

10.02 cm\(^3\)

D

10.06 cm\(^3\)

Ask EduPadi AI for a detailed answer
Correct Option: A

The question provides the linear expansivity of brass and asks for the volume at a different temperature. We need to use the concept of volume expansivity, which is related to linear expansivity.

Here's how to solve the problem:

  1. Relationship between linear and volume expansivity:

    • Volume expansivity ((\gamma)) is approximately three times the linear expansivity ((\alpha)): (\gamma = 3\alpha)
  2. Calculate the volume expansivity:

    • Given (\alpha = 2 \times 10^{-5} , ^\circ C^{-1})
    • (\gamma = 3 \times (2 \times 10^{-5} , ^\circ C^{-1}) = 6 \times 10^{-5} , ^\circ C^{-1})
  3. Apply the volume expansion formula:

    • (\Delta V = V_0 \gamma \Delta T)
    • Where:
      • (\Delta V) is the change in volume
      • (V_0) is the original volume ((2 \times 10) cm(^3) = 20 cm(^3))
      • (\gamma) is the volume expansivity ((6 \times 10^{-5} , ^\circ C^{-1}))
      • (\Delta T) is the change in temperature ((100 ^\circ C - 0 ^\circ C = 100 ^\circ C))
  4. Calculate the change in volume:

    • (\Delta V = (20 , cm^3) \times (6 \times 10^{-5} , ^\circ C^{-1}) \times (100 , ^\circ C))
    • (\Delta V = 0.12 , cm^3)
  5. Calculate the final volume:

    • (V = V_0 + \Delta V)
    • (V = 20 , cm^3 + 0.12 , cm^3 = 20.12 , cm^3)

Therefore, the final volume of the brass at (100 ^\circ C) is (20.12 , cm^3). None of the given options match this result.

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses